Docker Interview Questions SET 1

What is Docker, and how does it differ from virtual machines?

Docker is an open-source platform for developing, shipping, and running applications as
containers.

Docker containers provide a way to package and run software in a portable manner, without
having to worry about the underlying infrastructure.

Unlike virtual machines, Docker containers share the host's kernel and use the host's resources,
making them much lighter and more efficient than virtual machines.

Critena Docker Virtual Machines

Use of OS All containers share the host OS Each VM runs on 1ts own OS

Startup ime Very fast Slow
Isolation Process-level 1solation Full 1solation
Security Low High

What are the benefits of using Docker in a software development and testing
environment?

Docker allows for consistent and reproducible environments, which makes it easier to develop,
test, and deploy software.

Docker also makes it easy to scale applications and run them in different environments, such as
staging and production.

It simplifies dependency management, reduces the risk of conflicts, and increases productivity
by allowing developers to work with standardized and isolated environments.

Docker Benefits:

Provides fast delivery of applications.

Aids in quick deployment for easy management.
It is deployable and scalable.

Has high density and runs more workloads.

Test Automation Academy
Jatin Shharma

How do you create a Docker container, and what are the necessary steps?
To create a Docker container, you need to write a Dockerfile that specifies the container's
configuration and dependencies.
The Dockerfile is used to build an image, which is the blueprint for the container. Once the
image is built, you can use it to run containers.
The necessary steps for creating a Docker container include:

o Writing a Dockerfile

o Building the image using the Dockerfile

o Running the container using the image

% GEEKFLARE

| docker build |} -yl docker daemon J\}
”/a '~-_""\\‘ NG.MX
| docker pull } \ R :
/ =Y i ’\ e k
| docker run /] g"\ «| 4 openstac
g W | | eiiiiesssiepdaness i
. openstack. build
=g) - pul
ot run

Test Automation Academy
Jatin Shharma

4. How do you manage images and containers in Docker?
e Docker provides several commands for managing images and containers. Some of the
commonly used commands include:
o docker build: Used to build an image from a Dockerfile
docker run: Used to run a container from an image
docker ps: Used to list all running containers
docker stop: Used to stop a running container
docker rm: Used to remove a container
docker images: Used to list all available images
docker rmi: Used to remove an image

0 O O O O O

_ 3 Pul
1 Build h
2 Push
Docker File Docker Registry
. % Run
4 Save 8 Commit
7
Start
Container Stop
- Restart
O
Docker Image Backup Docker Host

5. How do you deploy a Docker container to production?

e To deploy a Docker container to production, you need to follow these steps:

e Build the Docker image from the Dockerfile

e Push the image to a container registry such as Docker Hub or Amazon ECR

o Deploy the container to the production environment using an orchestration tool like Docker
Compose or Kubernetes

Test Automation Academy
Jatin Shharma

How do you configure networking in Docker, and what are the different types of
networks available?

Docker provides several types of networks, including bridge, host, overlay, and macvlan.

The bridge network is the default network and is used to connect containers to the host's
network.

To configure networking in Docker, you can use the docker network command to create and
manage networks.

You can also specify network configuration options in the Dockerfile or docker run command.

Here are the different types of networks available in Docker:

Bridge network: It is the default network that allows communication between containers
running on the same Docker host. Containers on this network are assigned an IP address in the
same range as the host.

Host network: This network mode bypasses Docker's network stack and attaches the container
directly to the host's network. Containers on the host network share the same IP address as the
host, and port mapping is not required.

Overlay network: It is used to connect containers running on different Docker hosts, enabling
them to communicate with each other as if they were on the same network. Overlay networks
use the VXLAN protocol for data plane communication.

Macvlan network: It allows a container to be directly attached to a physical network interface
on the host, enabling the container to appear as a physical device on the network.

None network: It disables networking for a container.

To create a network in Docker, you can use the docker network create command followed by the
network driver name and any additional options. For example, to create a bridge network named "my-
network," you can use the following command:

docker network create --driver bridge my-network

Test Automation Academy
Jatin Shharma

Once the network is created, you can connect containers to it using the --network option when running
the container with the docker run command. For example, to run a container named "my-container" on
the "my-network" network, you can use the following command:

docker run --network my-network my-container

7. What are Docker Compose and Docker Swarm, and how do they differ from each
other?

Docker Compose:

o Docker Compose is a tool that allows you to define and run multi-container Docker applications.
It uses a YAML file to define the services that make up the application, including the container
images, environment variables, and other configuration options

e Docker Compose is ideal for local development and testing environments, while Docker Swarm
is designed for production environments with high availability and scalability requirements.

Docker Swarm:

Docker Swarm is a native clustering and orchestration solution for Docker containers. It allows you to
create and manage a cluster of Docker hosts, and deploy and manage containerized applications across
the cluster. Docker Swarm uses a declarative model to specify the desired state of the services running
on the cluster, and it provides built-in load balancing, service discovery, and scaling capabilities.

The key differences between Docker Compose and Docker Swarm are:

e Docker Compose is designed for single-host environments, while Docker Swarm is designed for
multi-host environments.

e Docker Compose is a tool for defining and running multi-container applications on a single
Docker host, while Docker Swarm is a tool for orchestrating and scaling containerized
applications across a cluster of Docker hosts.

e Docker Compose uses a YAML file to define the services that make up the application, while
Docker Swarm uses a declarative model to specify the desired state of the services running on
the cluster.

e Docker Compose does not provide built-in load balancing or service discovery capabilities, while
Docker Swarm provides these features out-of-the-box.

Test Automation Academy
Jatin Shharma

How do you monitor Docker containers and identify performance issues?

To monitor Docker containers, you can use Docker's built-in monitoring tools or third-party
monitoring tools like Prometheus or Grafana.

You can also use logging tools like ELK stack or Splunk to monitor container logs.

To identify performance issues, you can monitor CPU, memory, and network usage, as well as
application-specific metrics like request latency and error rate.

What are the security considerations when using Docker, and how do you ensure the
security of your Docker environment?

Some of the security considerations when using Docker include:

10.

Keeping Docker up-to-date with the latest security patches and updates.

Restricting access to Docker's APl and ports to prevent unauthorized access.

Ensuring that only trusted images and repositories are used.

Implementing proper network security measures to secure container communication.

Using containerization best practices, such as running containers as non-root users and limiting
container capabilities.

Implementing container-level firewalls and intrusion detection/prevention systems.

Enforcing security policies at the image and container level.

How do you integrate Docker with continuous integration and continuous deployment
(C1/CD) tools?

To integrate Docker with CI/CD tools, you can use tools like Jenkins, GitLab CI/CD, or CircleCl,
which provide native support for Docker.

You can configure your CI/CD pipelines to build Docker images, run tests in Docker containers,
and deploy containers to staging and production environments.

You can also use Docker registries like Docker Hub or Amazon ECR to store and share images
across different environments.

you can use tools like Kubernetes or Docker Swarm to automate container deployment and
scaling.

Test Automation Academy
Jatin Shharma

